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Abstract— For an autonomous robotic system, the
ability to share the same workspace and interact with
humans is the basis for cooperative behavior. In this
work, we investigate human spatial language as the
communicative channel between the robot and the
human, facilitating their joint work on a tabletop.
We specifically combine the theory of Dynamic Neural
Fields that represent perceptual and cognitive states
with motor control and linguistic input in a robotic
demonstration. We show that such a neural dynamic
framework can integrate across symbolic, perceptual,
and motor processes to generate task-specific spatial
communication in real time.

I. INTRODUCTION

One goal of human-robot interaction is to enable
joint action in an environment shared between
non-expert humans and autonomous robots. Those
environments are unstructured, partially unknown,
and include the human operator, with whom the
robotic assistant must interact and cooperate. In
this case, two fundamental requirements arise. First,
the robotic assistant must possess a certain de-
gree of autonomy, obtaining information about the
environment through its perceptual processes and
acting in relation to objects in the environment.
Second, the robotic assistant must be guided by the
human operator in real time and with an intuitive
user interface. Such guiding requires a two-way
interaction, with human instructions being picked
up by the robot autonomously and, conversely,
feedback about the robot’s state, or requests for
additional information being directed to the user.

The traditional means of providing inputs to an
electronic device – with a keyboard, a computer
mouse, or touch panels – are not practical in

human-robot interaction. The need for natural and
intuitive interfaces is widely recognized (see, for
instance, [1], [2]). A number of labs have developed
robotic assistants that interact with a human user
by analyzing linguistic commands and gestures [3],
[4], [5], [6]. Many of the successful approaches
emphasize the need for a common representation of
both linguistic and perceptual information. Tight in-
tegration of language processing, decision making,
learning, perception, and sensory-motor control is
desirable for performant human-robot systems, but
has not been achieved to the same extent. Here we
propose a theoretical framework that is inspired by
analogies with the nervous system and that enables
the systematic integration across these functions.

The described aspects of human-robot interaction
can be probed in a scenario where a robot and
a human user share a tabletop workspace. The
robot assists the human in, for instance, assembly,
cooking, or cleaning-up. The robot might hand over
an object, which is out of reach for the human, or
perform sub-tasks with the human supervision.

On a tabletop workspace, the notion of space
is essential. It is not only the basis for object
localization, it can also be used to support object
selection in ambiguous situations. Spatial language
is the natural means to exchange information about
spatial relations (“left”, “right”, “behind”) with a
human cooperator. It is remarkable, how flexible
and powerful human spatial language is [7], [8].
Indeed, a task as simple as specifying the location
of, say, an apple relative to a laptop involves several
cognitive processes: detecting the presence of ob-
jects in a scene, selecting a reference object relative



to which the spatial term is defined, aligning the
spatial reference frame with this object, and making
the decision about either the identity or location
of the target object. Moreover, these processes
are guided by sensory information, which may be
distorted by eye- and head-movements, new objects
appearing in view, occlusions, or simply sensory
noise.

The use of human spatial language in human-
robot interaction is constrained by the properties of
the underlying cognitive processes. Dynamic Field
Theory (DFT) [9] is a neural-dynamic framework,
in which cognitive models can be formulated in
an embodied and dynamical way, enabling their
coupling to real robotic sensors and motors. Re-
cently, we introduced a DFT architecture to account
for flexible human spatial language behaviors. The
DFT spatial language model was first designed
to account for metric biases, established in em-
pirical research on human spatial language [10].
We then further developed this model in a robotic
implementation to demonstrate how the empirical
model can be connected to a real-world sensory
information and generate flexibly real time spatial-
language behaviors [11].

Here, we extensively test the DFT spatial lan-
guage architecture in a human-robot interaction
scenario in which human and robot share a tabletop
workspace. The robot is able to answer questions
about the colors of the objects on the tabletop and
spatial relations between them. The user can also
direct the robot’s attention to a particular object
by specifying it’s color or spatial relation and the
color of a reference object, relative to which the
relation is to be applied. In ambiguous situations,
the user might want to specify both color and
spatial relation of an object, or let the robot decide
autonomously which object to chose from the ones
that satisfy the provided constraint. The initial cue
and the disambiguating cue are provided by the
human user in a natural way, no special timing
is needed. In particular, a corrective signal can be
given when the robot makes an erroneous decision
based on the ambiguous initial information. In this
work, we extend the motor repertoire of the robot
with a pointing gesture, in order to provide better

feedback to the user about the robot’s decisions on
the object of interest, and to probe the capability of
the dynamic field representations to guide robotic
movement.

The neural-dynamic model is implemented on an
anthropomorphic robotic platform [25]. Perceptual
input from a robotic camera shapes an attractor of a
neurally inspired dynamic field that represents the
visual scene. Categorical linguistic input about the
identities of objects, or about the spatial relations
between them is integrated in the graded neural
fields’ dynamics. These dynamics stabilize deci-
sions about the presence of objects, their features,
or spatial relations, but stay sensitive to relevant
perceptual and linguistic input. This results in a
flexible and fluent communication with the user,
in which the dynamics of the architecture adapts
naturally to the user input and the dynamical visual
scene. Moreover, the graded metric DFT represen-
tation of the visual scene can guide the robotic
action by setting an attractor for the dynamics
controlling the position of an actuator.

The paper is organized as follows. In the remain-
der of the Introduction, we review the related work.
The second section provides a brief introduction to
DFT and a description of the DFT spatial language
architecture. In the third section, we present the
robotic platform CoRA, on which two demonstra-
tions were carried out. The demonstrations ex-
emplify two paths in user-robot interaction about
objects on the tabletop, emphasizing performance
of the model in ambiguous situations. We conclude
with a short discussion of what is achieved in this
work.

A. Related Work

Enabling human-robot interaction and making
it more natural for the non-expert human user
is currently a topic of vivid research. The robot
companion introduced in [12] detects the human
operator and picks-up his or her commands. The
robot combines the information provided by speech
and pointing. A key issue in that work is to coor-
dinate multiple input modalities. Orchestrating the
algorithms that support speech recognition, sound
source localization, and image processing is the



main bottleneck for a flexible and robust commu-
nication between the user and the robot.

A similarly complex architecture [6] relies on
human-robot interaction to enable learning of vi-
sual features and associating them with language
categories such as color or shape names and spatial
relations. Extensive human supervision is needed,
in particular, when the categories must be adjusted
in changing environments.

A combined Bayesian and symbolic architecture
enables a robotic assistant to learn word-to-meaning
associations from interaction with a human user
based on the robot’s representations of its actions
[5]. Because these representations are thus associ-
ated with words, they can be used to instruct the
robot to perform specific tasks. These representa-
tions also provided context for speech recognition.

Roy and colleagues [13], [14] emphasize the in-
ternal representations that link spatial semantics to
visual processing and motor behaviors, highlighting
role of embodiment and situatedness. Ripley, the
most recent variant of this approach [4], achieves
an impressive range of language behaviors in a
tabletop setting similar to our scenario. Our con-
cepts overlap with those employed in these systems,
but use analogue neuronal dynamics rather than
algorithms throughout.

Another aspect of spatial language is the per-
spective alignment between two interacting robots
[15], as well as the emergence of spatial referencing
within a population [16].

II. METHODOLOGICAL BACKGROUND

In this section, we briefly review the framework
of Dynamic Field Theory (DFT) and the spatial
language architecture built in this framework.

A. Dynamic Fields Theory (DFT)

The neurally-based representational language of
DFT [17] emphasizes attractor states and their
instabilities in the dynamics of neural fields. Ac-
cording to DFT, cognitive states may be defined in
terms of distributions of activation that evolve over
continuous dimensions. These dimensions represent
parameters of the state (e.g. color, position, angular

deviation, speed). The activation function character-
izes presence of the particular parameter values at
every moment in time.

1) The dynamic field equation: The activation
within dynamic neural fields evolves in time ac-
cording to a non-linear differential equation (1) that
defines the rate of change, u̇(x, t), of the activation
function, u(x, t), defined over a metric dimension,
x, at each moment in time.

τ u̇(x, t) = − u(x, t) + h+ I(x, t) (1)

+

∫
f
(
u(x′, t)

)
ω(∆x)dx′

According to this equation, the activity in a dy-
namic neural field converges with a time-constant,
τ , to an attractor, defined by a negative resting level,
h, external inputs, I(x, t), and lateral interactions
within the field.

The lateral interactions are homogeneous within
the field, they are thus expressed by a convolution
term. The convolution kernel is a Gaussian func-
tion:

ω(∆x) = cexce
−(∆x)2

2σ2 − cinh, ∆x = x− x′. (2)

This kernel means that every two near-by sites of
a neural field, x and x′, are connected with a posi-
tive (excitatory) connection weight, and distant sites
are connected with a negative (inhibitory) weight.
The short-range excitation is of amplitude cexc and
range σ. The global inhibition is of amplitude cinh.

The sigmoid non-linearity, Equation (3), shapes
the output of the dynamic field. The sites of the
field with positive outputs are termed to be active.

f(u) =
1

1 + e−βu
(3)

2) Specificity of the field’s dynamics: Because of
the negative resting level, the field is quiescent (not
active) without external input. When the external
input exceeds an activation threshold, a localized
bump of activity evolves in the field [18]. These
activity bumps represent features, locations, action
plans in DFT.



The lateral interactions in the field determine the
stability of the localized bump solution. The lateral
interactions also provide for the instabilities in the
field’s dynamics, which result in detection, mem-
ory, selection among alternatives, or “forgetting” of
dynamic attractor states [9].

3) Applications: Recent applications of DFT in-
clude empirical research in visual working memory
[19], the development of spatial working memory
[20], and spatial semantic processing [10]. In a
robotic context, DFT has been employed for object
recognition [21], cooperation [22], sequence gener-
ation [23].

Its successful application in both empirical and
robotic contexts suggests that DFT provides a suit-
able framework for realizing the representational
integration supporting spatial language semantics in
human-robot interaction.

B. The DFT spatial language framework
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Fig. 1. Overview of the architecture.

This section outlines the overall structure and
dynamics of the DFT spatial language architecture
(Figure 1). Along with dynamic neural fields, we
also introduce here discrete dynamical neural nodes
that represent the linguistic input provided by the
human user, as well as the linguistic output of the
robot.

The robotic camera provides input to a set of
dynamic neural fields that represent the visual space
through associations of colors and their locations.
Each of these color-space fields (see Figure 1)
receives input from pixels in the camera image,
the hue value of which falls within a certain
range, corresponding to a basic color (e.g. blue,
red, green, etc). The resolution of color is low
here because only a few colors are needed to
represent the objects. Thus, several discrete two-
dimensional color-space fields are sufficient to sam-
ple the visual scene. The continuum of colors can
be resolved to an arbitrary degree of granularity in
a three-dimensional implementation of the color-
space field.

The visual input from the camera alone is not
sufficient to activate the color-space fields. Lan-
guage input specifying the color of the object
boosts the resting level of the corresponding color-
space field (“green” on Figure 1). When summed
with the visual input from the camera, this acti-
vation boost induces an instability that leads to
formation of a single peak of activation centered
over the object that provides the strongest input of
the specified color. The spatial language input also
influences the color-space fields’ dynamics through
the spatial semantic fields (see below).

A peak of activation in a color-space field sets an
attractor for the dynamics that controls the robotic
movements (see section III).

The reference field (Figure 1) is a spatially tuned
dynamic field, which also receives visual input.
When the user specifies the reference object’s color,
the corresponding “reference-color” neural node
becomes active and pixels with the specified color
in the camera image provide input to the reference
field. A reference field activation peak specifies the
location of the reference object and continuously
tracks its position. It also filters out irrelevant inputs
and camera noise, thus stabilizing the reference ob-
ject representation. Having a stable, but nonetheless
updatable reference object representation allows the
spatial semantics to be continuously aligned with
the visual scene.

The spatial terms are characterized by the shape
of spatial semantic templates, which define the



connectivity between a particular spatial term and a
“retinotopic” space. These connection weights are
modulated by the localized activity in the reference
field representing the user-defined reference object.
Thus, the spatial semantic templates are aligned
with the location of the reference object in the
image. This shift is accomplished by a convolution
of the outcome of the reference field with the
spatial semantic template. The particular functions
defining “left”, “right”, “in front”, and “behind”
here are two-dimensional Gaussians in polar co-
ordinates and are based on a neurally-inspired ap-
proach to English spatial semantic representation
[24]. In Cartesian coordinates, they have a tear-drop
shape. The shapes of spatial semantic templates
were explicitly designed in this work, but arbitrary
shapes can be acquired in a learning process, by
laying down memory traces in the neural fields’
dynamics.

The spatial semantic fields (see Figure 1) are
dynamic neural fields with weak lateral interac-
tions. They integrate the spatial semantic user in-
put (aligned with the reference object) with the
summed output of the color-space fields. Both these
connections are reciprocal. The summed output of
the spatial semantic fields serves as input to the
color-space fields, enhancing activation in those
regions corresponding to the specific spatial term.
When active, they also provide input to spatial-
term nodes, triggering a spatial-term output (“left”,
“right”, etc.).

III. ROBOTIC IMPLEMENTATION

The model described in the previous section was
implemented on the anthropomorphic robot CoRA
[25]. Experiments demonstrate the successful gen-
eration of pointing and head movements consistent
with the constraints provided by the user, as well
as production of correct answers to questions about
colors of objects and spatial relations between
objects in a scene.

A. CoRA

The robotic assistant system CoRA has an an-
thropomorphic seven degrees of freedom (DoF) arm
mounted on a one DoF trunk. CoRA is built as

a modular robotic system, in which each module
is servo-controlled and communicates via a CAN-
bus interface with the controlling PC. Above the
trunk, a two DoF pan/tilt unit carrying a stereo color
camera system is assembled (Figure 1).

B. CoRA head movement

The movement of the head of the robot is gov-
erned by an attractor dynamics defined over pan and
tilt angles. An activity peak in the color-space fields
is projected on the horizontal and the vertical axis
of the image plane. The resulting activity profiles
are then multiplied with a linear monotonically
increasing function. These products yield larger
values for activity peaks farther away from the
midline of the visual field. These values are then
used as the target forcelets in the dynamics of the
head’s pan and tilt. These forcelets effectively set
an attractor at the head pose, which centers the
target object in the camera view. The dynamics
for pan and tilt are run sequentially. First, the pan
converges to center the target along the horizontal
axes of the image plane. Only then tilt is changed.
This form of servo control eliminates the need for
the transformation from image-based to robot-based
coordinates.

C. CoRA arm movement

The dynamics controlling the head movement is
also used to control the end-effector position of the
robotic arm. The pointing gesture is performed in
a plane parallel to the tabletop. Assuming a fixed
distance to the tabletop, we use the tilt angle of the
robot head to calculate the distance from the robot
trunk to the pointing position. The pan angle of the
head is used to calculate the direction to the target
location in the horizontal plane. Combining both,
we calculate the desired Cartesian position of the
end-effector for the pointing gesture. The inverse
kinematics problem for the redundant robot arm is
solved in closed form [26].

IV. DEMONSTRATIONS

To illustrate how this system works and to probe
the dynamic processes supporting representational
integration in spatial semantics, we describe here



two particular demonstrations. In both demonstra-
tions, four objects are put on the tabletop (Figure 2):
a green tube of cream, a red plastic apple, a
blue tube of sunscreen, and a green deo-spray
can. The objects are represented by their colors
in the current implementation. Thus, the two green
objects cannot be distinguished by the robot, and
additional information from the user is needed to
act in the task. The color modality is a place-
holder in this implementation of a more complete
object recognition system [21]. However, the failure
to disambiguate two objects would require support
from the user even when such system is used.

In Demonstration 1, the user asks the robot to
point to the green object. The user additionally
specifies the spatial relation “to the left from the red
one”, when the robot chooses the (wrong) green ob-
ject to the right from the red one, which is slightly
more salient. In Demonstration 2, the user asks the
robot to point to the object to the right from the
red object, adding “the green one”, when the robot
first selects the more salient blue object, which
also satisfies the specified spatial relation to the red
object. The color of the reference object (red) is
provided by the user in both demonstrations.

In the current implementation, the user provides
inputs about colors of objects and spatial relations
through a graphical user interface, whereas this
interface can be easily replaced by a keywords
based speech recognition system. An important
peculiarity of the interface is that both linguistic
and graded inputs and outputs are possible: the user
can either provide a language term for a color, or
set the particular hue on a color-wheel, the same is
true for the robot. For the purposes of this paper,
however, the most important aspect of human-
robot interaction is the flexibility with which the
user can provide inputs when needed, or desired.
These inputs are integrated into the architecture’s
dynamics in real time and cause meaningful effects
by shifting the attractor states of the dynamics.

A. Demonstration 1: Specifying “green” then
“left”

The user input in Demonstration 1 is analogous
to saying “Point at the green object, the one to the

left of the red object”. When “green” is first spec-
ified as the color of the target object, the “green”
color-term node activation provides a homogeneous
activation boost to the “green” color-space field (see
Figure 2a, upper row). Because there are two green
objects in the camera image, the “green” color-
space field reaches activation threshold at both the
locations of the green tube and the green can. Al-
though the lateral inhibition in the dynamical field
slows down the formation of an activation peak in
this field, the green can provides stronger input and
finally wins the competition. As a consequence, a
peak evolves at that location in the color-space field
and the camera starts to move to center this object.
A peak also evolves in the “right” spatial semantic
field, and the robot signals selection of the object
to the right from the red object.

When the user then specifies “left” as the spatial
relation, however, the “left” spatial semantic field
receives a homogeneous boost, providing additional
activation to the left portion of the color-space
fields (Figure 2a, middle row). This additional input
provides an advantage to the representation of the
green tube in the “green” color-space field. Because
of the lateral inhibition in the field, the current
peak at the (incorrect) location of the green can
is eventually extinguished and a peak at the correct
location emerges. The new peak in the green field
resets the attractor for the dynamics of camera
and arm movements. The robot turns the camera
to center the correct green object in the image
(Figure 2a, lower row), and points to it.

B. Demonstration 2: Specifying “right” then
“green”

The user input in Demonstration 2 is analogous
to saying “Point at the object to the right of the red
object, the green one”. When the user first specifies
“right” as the spatial relation, the positive activation
in the “right” spatial semantic field is propagated
to the color-space fields. Here, that region overlaps
with the location of the blue tube and the green can
(Figure 2b, upper row). The overlap with the blue
tube is slightly stronger because it lies closer to the
reference object. A peak of activation builds-up in
the blue color-space field, the robot signals about



(a) Demonstration 1 (b) Demonstration 2

Fig. 2. Snapshots of activity of the color-space dynamic fields at decisive time-points in the dynamics during the two robotic
demonstrations (see text for details).

selection of the blue object and initiates the head
and arm movements.

When the user defines “green” as the color of the
object of interest (Figure 2b, middle row), however,
the uniform activation boost to the “green” color-
space field provides advantage to this fields and
a localized activation peak builds up at the green
can location. The inhibitory interaction between the
color-space fields forces the peak at the (wrong)
blue item location to extinguish. The activity in the
“green” color-space field resets the attractor for the
dynamics of motor control for both camera and arm
movements. The camera centers the correct green
object in the camera image and the robot starts
the pointing movement towards it (Figure 2b, lower
row).

V. DISCUSSION

The presented work is the first step towards a
language system in robots that is grounded in the
neural dynamics of a cognitive spatial language
architecture. The DFT spatial language model was
proven to capture several traits of human spatial
language processing [10], [11], and work contin-

ues to address additional empirical findings. Our
demonstrations reveal how neural-dynamic theo-
ries such as DFT can successfully integrate dif-
fering representational dimensions to generate au-
tonomous spatial language behaviors in robots.

The robotic system in our demonstrations was
able to answer questions related to the object’s
position, color, its spatial relation to other objects
in the workspace, and to point at such objects
in order to confirm the decision. The user could
provide information about the object of interest at
any time during the interaction, flexibly shaping the
dynamics of the architecture, emphasizing either
the feature, or spatial aspects of the visual scene.
Interaction with the robot is thus more natural for
the human user, who does not have to provide all
the necessary information before the task execution
can start.

Clearly, a truly comprehensive model of
language-related behaviors would also need addi-
tional levels of linguistic (e.g syntactic, phonolog-
ical) and higher-level cognitive processing. Never-
theless, this work points to a viable framework to
aid the development of mutually constraining ap-



proaches to robotic communication and to modeling
human spatial language processing.
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the dynamic field theory: Working memory for locations
becomes more spatially precise over development,” Child
Development, vol. 74, no. 5, pp. 1393–1417, 2003.
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