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Abstract— Most modern computer vision techniques rely on
large amounts of meticulously annotated data for training and
evaluation. In close-to-market development, this demand is
even higher since numerous common and—more important—
less common situations have to be tested and must hence be
covered datawise. However, gathering the necessary amount
of data ready-labeled for the task at hand is a challenge of
its own. Depending on the complexity of the objective and
the chosen approach, the required amount of data can be
vast. At the same time, the effort to capture all possible
cases of a given problem grows with their variability. This
makes recording new video data unfeasible, even impossible
at times. In this work, we regard parking space classification
as an exemplary application to target the imbalance of cost
and benefit w.r.t. image data creation for machine learning
approaches. We rely on a fully-fledged park deck simulation
created with Unreal Engine 4 for data creation and replace
all conventionally recorded and hand-labeled training data by
automatically-annotated synthetic video data. We train several
of-the-shelf classifiers with a common choice of feature inputs
on synthetic images only and evaluate them on two real-
world sequences of different outdoor car parks. We reach a
classification performance that matches our previous work on
this task in which all classifiers were developed solely with
real-life video data.

I. INTRODUCTION

In the age of deep learning, we frequently strive for
new challenges in machine learning and computer vision,
and every breakthrough is valued as a huge success. While
theories and machine learning approaches are constantly
evolving, new methods require more and more highly ac-
curately annotated data for training and evaluation [1], [2].
The quantity of generated data, however, falls behind. This
is particularly true when approaching new fields where
application-specific data is needed or various conditions have
to be covered. In fact, qualitatively good data in the necessary
amount is only available for a small number of machine
learning tasks. In the area of intelligent vehicles, these mainly
include different detection tasks like pedestrian, traffic sign,
and vehicle detection [3], [4], [5]. This circumstance limits
the potential of scientific progress to very few topics. It is a
stroke of luck to find readily annotated data in the necessary
amount with the required labels, so creating new data sets for
a certain purpose is an important, yet oftentimes undervalued,
commitment to the computer vision and machine learning
community. E.g., in the case of parking space classification,
outside locations with uncertain weather conditions, lack of
electricity supply on site, and possible violations of the Data
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(a) Sunshine Scenario (b) Dark Clouds Scenario

(c) Fog Scenario

Fig. 1: Various weather conditions within the simulated
environment. Parking space snippets of these sequences were
used for classifier training.

Protection Act are some of the challenges to face when it
comes to video data creation. Once the footage has been
recorded, days or even weeks of manual labeling follow,
making the process of ground truth creation lengthy and
excessively unattractive. An automated way of gathering both
image data and specific ground-truth information seems a
precious asset for this scenario, but could also be valuable
for other computer vision and image-based machine learning
challenges.

In this paper, we deploy the previously presented simu-
lated car park environment [6] to investigate a new method
of training data creation for machine learning and image
processing algorithms. This is an extension to our recently
established video-based parking space classification [7], [8]
and on-site routing [9]. Here, we replace earlier used training
data for parking space classification completely with syn-
thetic video data gathered from the simulated environment.
Input data was taken from three different weather conditions
(sunny, dark clouds and fog), of which we recorded video
sequences beforehand (cf. Fig. 1).

Following up on our earlier work [8], we train a number
of k-Nearest-Neighbor (kNN) classifiers and Support Vector



Machines (SVM) with Difference-of-Gaussian (DoG) fea-
tures of different filter sizes and evaluate their performance
on two real-world video sequences of different parking areas.
Other than [8] we have decided to omit color feature inputs,
as the final system for on-site parking guidance is intended to
run on preinstalled surveillance cameras with grayscale input.
Our main contribution is the demonstration and evaluation of
the transferability from purely synthetically generated images
to the task of parking space classification with real-world
camera data.

The paper is organized as follows: Section II takes a
closer look at related works in the field of simulation within
the context of intelligent transportation. In Section III the
generation of synthetic image data for training purposes
is described in more detail. Section IV focuses on the
experiments which were conducted to evaluate and validate
our approach. A conclusion and outlook in Section V round
off the paper.

II. RELATED WORK

Simulations are an essential tool in many industrial and
scientific fields of research. In the context of intelligent trans-
portation systems they are frequently used for optimization
and evaluation purposes, or to visualize results. Commonly
used tools for traffic simulation are VISSIM2, AnyLogic3,
MATSim4 and SUMO5.

The PTV Group, developer and owner of VISSIM, is one
of the most popular suppliers of simulation software for
traffic analysis and visualization of given data. Using VIS-
SIM for microscopic traffic simulation in combination with
other complementary products like VISUM for macroscopic
transportation planning and VISTRO for traffic impact anal-
ysis & signal optimization, PTV offers a solution for many
traffic simulation demands. The PTV Group themselves use
VISSIM to visualize simulations of project conducted for a
number of clients. Furthermore, the PTV products are used
worldwide to support researchers and companies in various
traffic-related simulation tasks [10].

For the purpose of developing and testing parking guid-
ance systems, Yuan and Liu [11] built a simulation frame-
work including car following and vehicle generation models
and employ VISSIM for the dynamic simulation of traffic.
The main focus of this project, as with most simulation-
related works, lies in the analysis and simple visualization
of predefined data within the simulated system as proof of
concept.

In order to maximize the intended output and use sim-
ulations as flexible as possible, many research groups opt
for building their own simulation frameworks. Here, game
engines are becoming a more and more valued tool for
scientific purposes. Konrad et al. [12] use a game engine for
the reproduction of traffic-related scenarios from previously
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recorded data. They combine information extracted from
Google StreetView, OpenStreetMaps and SketchUp (also
by Google) to collect map data and other static scene
characteristics and conjoin the resulting information with
such recorded from vehicle sensors to rebuild the scene in
CityEngine. While this first step is the virtual visualization
of an occurred real-world scenario, their project goal is
the analysis of information for the evaluation of collision
avoidance algorithms. With this purpose in mind they attempt
to show the usability of game engines in a scientific context
along the way.

Modeling an artificial transportation system with a
Delta3D-based platform, Miao et al. [13] use the advantages
of this engine’s gaming background by integrating human
action and interaction rather than using precalculated data.
They use native concepts of game engines by adopting a
multiplayer approach to create new data with a simulated
environment in which the human behavior component is
still intact. Their main focus is the interaction with the
real world, i.e., the reception of real-time information from
control signals and direct multi-user interaction.

Signal control scenarios are modeled by Wang and Abbas
[14] as well, however in a primarily educational context.
Their simulation is used to help engineering students under-
stand complex concepts behind traffic signal control. A study
about the learning effects show the usability of simulations
for the analysis and comprehension of complex data.

All of these project use simulations of visually highly
simplified manners to depict or create data. Their focuses
are diverse but never related to realism in visualization.
The approach presented in this paper is opposed to that. A
simplification of object’s appearance is not desirable; instead
a photo-realistic environment with detailed cars and natural
behavior is required for the purpose of image training data
creation for machine learning algorithms.

III. SIMULATED DATA GENERATION

Using the simulated environment described in [6], a num-
ber of video sequences with different weather and lighting
conditions were recorded. From these sequences we selected
training data from sunny, cloudy and foggy weather con-
ditions to use as training data. The extraction of the final
images used for training is outlined in Section III-A. While
recording the relevant sequences, we automatically extracted
the ground-truth data needed for training. The procedure is
described in Section III-B.

A. Extraction of Training Data

Synthetic data forms the sole input data for all classifiers.
Fig. 2 shows typical snippets of empty and occupied parking
spaces, which were used for training. The training data set
covers a total of 24.498 samples, 11.760 of them depicting
empty parking spaces, 12.738 snippets showing occupied
ones.

Before the training images can be extracted from the
video sequences, a couple of preprocessing steps have to be
executed, similar to real-world videos. Using the methods



Fig. 2: Examples of training data extracted from video
sequences of the simulated environment. Weather conditions
include sunny, cloudy and foggy samples.

described in [8], first an intrinsic calibration is applied to
correct the camera distortion of the recording camera, before
the parking spaces are labeled once by hand in the then
rectified images. For the latter, it is sufficient to mark a
complete row with four corner points and divide the chosen
region by the number of parking spaces in it. This approach
is relatively time effective while sufficiently exact at the same
time.

Although the preparation of the simulated training data
does not differ from real-world footage, working with simu-
lated environments has a huge advantage, namely the auto-
matic extraction of ground-truth data. In the given scenario,
the required ground truth comprises of a unique parking
space ID and a binary classification of the occupancy status
in each frame of a given video sequence. While we used
this advantage for the evaluation of classifiers in [6], the
extracted occupancy information now aids in the automatic
sorting of data snippets into two classes (available/occupied)
for training. The image regions marking each single parking
space are cut out automatically and matched with their
respective labels. The resulting images can now be used as
input data for training.

B. Automatic Generation of Ground-Truth Data

When it comes to the training and evaluation of image
processing algorithms, annotated data is a key element.
However, the process of annotating video material is time-
consuming and hardly feasible. For parking space classifica-
tion, e.g., sensible annotations might include the location and
current occupancy status of each parking space that should
be observed. This information, of course, has to be gathered
for every single frame in order to use the data for training
or further assessment purposes. There exist public data sets
for the given task on the Internet, but using them naturally
comprises a number of potential problems as well, as the
given image data might only partially fit the task or the
annotations are either not available or marking the wrong
aspect.

In the simulated environment, it is possible to gather
these and other ground-truth data automatically at will. So,
in combination with the image data, ground-truth data was
extracted from the car park environment. In the given case
we are interested in each parking space’s occupancy status,
therefore each parking space object in the environment was
equipped with a trigger volume, which registers changes of
occupancy status and enters the information to a log file
together with a system time stamp. This change detection
operated both from “available” to “occupied” and vice versa.

Every video sequence that is recorded out of the simulated
environment also automatically creates a sequence log file,
stating the system’s time stamp for every single recorded
frame. The information of both parking space and sequence
log files is afterwards automatically matched to gain ground-
truth data with a framewise precision. The resulting informa-
tion is then used to cut out the image snippets required for
training and sort them into the two classes for the decision
process without further ado.

IV. EXPERIMENTS

In this section, we evaluate our approach of replacing input
images for classifier training completely with synthetic data.
As described in Section III, we use training samples from
three different weather scenarios created with the simulated
car park environment presented in [6]. In Section IV-A we
introduce the two sequences which were used for validation.
The conducted classifier training is explained in more detail
in Section IV-B. The results of our experiments are presented
and discussed in Section IV-C.

(a) Sequence A (b) Sequence B

Fig. 3: Video sequences used for the evaluation of the
different classifiers.

A. Validation Sequences

Two real-world video sequences were chosen in order to
evaluate the classifiers (cf. Fig. 3). Sequence A shows a single
parking row at the side of a street. The video camera was
placed in a building opposite the parking area. The sequence
was recorded with 5 fps and is 11:18 min long. 15 parking
spaces are evaluated. The difficulty with this sequence is the
mirroring effects of the closed window through which the
scene was recorded.

Sequence B overlooks a parking area with several rows.
The camera was placed on a tripod about 11 m off the ground
to cover a maximum of parking spaces at the same time. This



sequence was recorded with 5 fps, as well, and lasts 3:25 min.
For evaluation, three rows with a total of 36 parking spaces
have been chosen. The rows are enumerated from row 1
to row 3 corresponding with their distance to the camera,
row 1 being the closest. A major problem in this outdoor
environment is wind, which results in partially extreme
camera movement. This is especially prominent in row 3 as
each parking space comprises of a relatively small number
of pixels.

B. Classifier Training

Partly following up on earlier results (cf. [8]), we chose to
train kNNs and SVMs for comparison. Although we achieved
promising results with color feature input, we decided to
train merely with DoG features of different filter sizes. This
is due to the fact that the system is intended to be used
with preinstalled surveillance cameras, which normally only
capture grayscale images. We trained both kNN and SVM
with DoG filter sizes of 3×3, 5×5, 7×7, 9×9, 11×11,
13×13, and 15×15.

The kNN classifier performs a clustering on the training
set in order to reduce the number of examples that have
to be stored. Regarding the kNN method, the parameters
(cf. [8]) were kept at k = 5 cluster centers and 50 prototypes
per class. For the SVM, training parameters were slightly
altered as follows: We chose the influence of the kernel
functions γ ∈ [10, 10 000] and the regularization parameter
C ∈ [10, 10 000] for training, and kept the radial basis
function kernel. We maintained 3-fold cross-validation for
SVM model selection as described.

As a temporal smoothing strategy, we adapt the following
filtering parameters: For Sequence A, we chose a constant
learning rate of α = 0.8 and a confidence threshold of
0.2. For Sequence B we kept the learning rate at α = 0.8,
however, adapted the threshold for each parking row. Row 1
was evaluated with a threshold of 0.6, row 2 was given a
threshold of 0.5 and row 3 a threshold of 0.15.

The threshold values were chosen depending on the dis-
tance of the respective parking row to the camera, with
smaller thresholds for bigger distances. This was necessary
as the classifiers, trained on simpler image data as the one
given to them for validation, had a lower confidence for
parking spaces classified as “occupied”. The lower the given
threshold, the less confidence is required to set a parking
space to “occupied”. As parking rows that were further away
from the camera had less pixels per parking space and thus
less information available for the decision, the threshold was
set lower than for the parking spaces in front. The threshold
for Sequence A was estimated according to the parking row’s
distance to the camera, as well, lying close to row 3 in
Sequence B.

C. Results and Discussion

First, we tested the performance of different fea-
ture/classifier combinations on Sequence A. The results are
shown in Table I. The values denote percentages of accuracy.
The accuracy for each parking space was calculated as

TABLE I: Classification results of Sequence A for kNN and
SVM classifiers for different feature inputs

classification rate [%]
DoG

kernel size kNN SVM
3 × 3 71.68 77.41
5 × 5 68.21 78.59
7 × 7 74.72 83.85
9 × 9 77.92 88.46
11 × 11 77.90 88.40
13 × 13 70.87 81.71
15 × 15 84.51 85.15

the ratio of correctly classified frames with respect to one
parking space to the total number of frames. The average per-
formance of individual results amounts to the row accuracy.
Each frame was evaluated. Accuracies highlighted in gray
show the best performances for each classifier type. It is clear
to see that the SVM outperforms the corresponding kNN
classifier in all cases. For both classifiers too small filter sizes
were unfavorable. While SVMs manage a peak accuracy of
88.46 %, the best kNN classifier results at 84.51 %, with
almost 4 % less accuracy.

In a direct comparison with [8], the classifiers trained on
real-world image data show slightly better results. Here, the
SVM gained a peak performance of 94.13 % on Sequence A
using a DoG filter size of 9×9. The best performing kNN
resulted in 93.58 % accuracy, using the biggest filter size
tested, i.e. 17×17.

Fig. 4: Visualized classification of Sequence A. Green boxes
are detected as available, red boxes identify occupied parking
spaces. Overall 15 parking spaces were monitored in this
sequence.

Although the simulated classifier results are worse than
could be expected from traditionally trained classifiers, i.e.
with real-world image data, they are solid enough to confirm
that both classifier types are able to classify empty and
occupied parking spaces in real-world footage up to a certain



TABLE II: Classification results of kNN classifier on Se-
quence B for different feature inputs

classification rate [%]
DoG

kernel size row 1 row 2 row 3 average
3 × 3 89.15 86.38 77.07 84.20
5 × 5 88.89 87.61 86.84 87.78
7 × 7 86.84 92.54 88.00 89.12
9 × 9 87.78 93.88 88.12 89.92
11 × 11 89.04 94.03 88.02 90.36
13 × 13 91.22 96.68 88.51 92.13
15 × 15 97.79 96.66 94.37 96.27

extend. The results were visualized directly in the video
during the classification process, as can be seen in Fig. 4.
Green boxes are classified as empty parking spaces, red
boxes as occupied ones.

Sequence B showed overall better classification results for
all rows. This holds for all feature/classifier combinations.
While row 3 has the weakest classification rate, due to
its distance to the camera, the front two rows are well
classified. The kNN classifiers (listed in Table II) show a
clear tendency towards bigger DoG filter sizes, resulting in
a peak performance of 97.79 % accuracy in row 1 and a top
average accuracy of 96.27 %. The latter even outperforms the
otherwise slightly better results of the SVM classifiers (cf.
Table III) with a best average classification rate of 95.15 %.
However, the SVM’s peak performance was gained for row 2
with the smallest feature input, resulting in 99.05 %. Taking
a closer look into the row performance, a clear drop of
accuracy can be seen for row 3. This holds for all classifiers
except one, and can be explained by its distance to the
camera. As depicted in Fig. 5, this row can classify the
highest number of parking spaces, but at the same time has
less pixels per parking space for classification, resulting in
a less confident evaluation of an occupancy status. Still the
results for this row are well acceptable.

Comparing these results once again to those achieved in
[8] with real-world data training, the real-world SVM has a
slightly better average classification rate on Sequence B with
96.43 % compared to 95.15 % achieved by synthetic data
training. However, the direct comparison of best-performing
kNN classifiers shows a gap of nearly 6 % regarding the
average 90.25 % for real-world training data to 96.27 %
accuracy. In this case, the simulated data classifier clearly
outperforms its real-world pendant, hereby strengthening the
presented approach. Again, the classification results were
visualized during the classification process. Fig. 5 depicts
the image overlay.

V. CONCLUSION

In this paper we proposed a new approach to gener-
ate synthetic image data for training purposes in machine
learning and image processing algorithms, focusing on the
task of parking space classification. By using a simulated

TABLE III: Classification results of SVM classifier on Se-
quence B for different feature inputs

classification rate [%]
DoG

kernel size row 1 row 2 row 3 average
3 × 3 97.43 99.05 78.13 91.54
5 × 5 95.96 95.73 88.36 93.35
7 × 7 96.27 96.81 87.89 93.66
9 × 9 97.62 96.41 88.58 94.20
11 × 11 97.49 94.95 86.80 93.08
13 × 13 97.97 95.68 83.65 92.43
15 × 15 92.12 98.87 94.45 95.15

Fig. 5: Visualized classification of Sequence B. Green boxes
are detected as available, red boxes identify occupied parking
spaces. There were a total of 36 parking spaces monitored in
three rows. Row 1, closest to the camera, holds 10 observed
parking spaces, row 2, in the middle, 11 parking spaces, and
row 3, which is farthest away from the camera position, can
handle 15 parking spaces.

car park environment in Unreal Engine 4 for image data
and ground truth extraction, we have presented a time-
saving alternative to traditional video recording and manual
labeling. We evaluated our approach of replacing real images
with synthetic data by training a number of kNN and SVM
classifiers with various DoG features and tested them on
two different real-world scenarios. The system gained a
classification accuracy of up to 99.05 %. A detailed side-by-
side comparison of the results on all sequences, taking all
parking deck configurations and classifier parameters into
account, revealed that replacing real-world with synthetic
data slightly decreases performance, but the effort for data
acquisition and labeling is significantly reduced. All in all,
we have shown that the task of parking space classification
can be considered solved without the use of real video data.

Although the potential usability of synthetic video data for
classifier training has been shown in this paper, there is still



room for improvement. The simulated car park environment
that was used for training purposes requires further opti-
mization, aiming for even more realistic looks and vehicle
behavior. More diverse data should be acquired from other
simulated car park environments to make classifiers more ro-
bust against different natural lighting and weather conditions.
Also an extended evaluation of grayscale-compatible input
features other than DoG features might result in classifiers
which are more suitable for real-world use. As data creation
is no longer problematic, machine learning approaches with
the requirement for big amounts of input data, such as deep
neural networks, can be examined for this and other tasks as
well.
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