
Measuring the Data Efficiency of Deep Learning Methods

Hlynur Davíð Hlynsson, Alberto N. Escalante-B., Laurenz Wiskott
Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany

Keywords: Data Efficiency, Deep Learning, Neural Networks, Slow Feature Analysis, Transfer Learning

Abstract: In this paper, we propose a new experimental protocol and use it to benchmark the data efficiency — perfor-
mance as a function of training set size — of two deep learning algorithms, convolutional neural networks
(CNNs) and hierarchical information-preserving graph-based slow feature analysis (HiGSFA), for tasks in
classification and transfer learning scenarios. The algorithms are trained on different-sized subsets of the
MNIST and Omniglot data sets. HiGSFA outperforms standard CNN networks when the models are trained
on 50 and 200 samples per class for MNIST classification. In other cases, the CNNs perform better. The re-
sults suggest that there are cases where greedy, locally optimal bottom-up learning is equally or more powerful
than global gradient-based learning.

1 INTRODUCTION

In recent years, we have seen convolutional neural
networks (CNN) dominate benchmark after bench-
mark for computer vision since the 2012 ImageNet
competition breakthrough (Krizhevsky et al., 2012).
These methods prosper with an abundance of labeled
data, and an abundance of data is often required for
acceptable results (Oquab et al., 2014). In contrast,
for most people, it is only necessary to see one pic-
ture of an Atlantic Puffin to be able to identify cor-
rectly such a bird as one.

To be fair, we have a lot of prior experience. It is
easy to make a mental note: “a puffin is a small black
and white bird with orange feet and a colorful beak”
because we have learned a useful representation of the
salient aspects of the image. Instead of being bogged
down by the details of every exact pixel value, as an
untrained AI might, we can focus our attention on the
most useful features of the image.

For this reason, investigations on the efficacy of
methods to learn a concept from few samples are of-
ten done through the lens of representation learning
(Bengio et al., 2013), for example via transfer learn-
ing (Pan and Yang, 2010) or low-shot learning (Wang
et al., 2018).

In this work we consider a method to measure
data efficiency, the performance of an algorithm
as a function of the number of data points avail-
able during training time, which is an important as-
pect of machine learning (Kamthe and Deisenroth,
2017), (Al-Jarrah et al., 2015). We quantitatively
examine the performance of CNNs and hierarchi-

cal information-preserving graph-based slow feature
analysis (HiGSFA) (Escalante-B and Wiskott, 2016)
networks for varying training set sizes and for vary-
ing task types.

HiGSFA has been chosen because it is the most
recent supervised extensions of slow feature analy-
sis (SFA) and has shown promise in visual processing
with a notable distinction from CNNs: the computa-
tion layers are trained in a "greedy" layer-wise man-
ner instead of via gradient descent (Escalante-B and
Wiskott, 2016).

The methods are applied to visual tasks: a simple
version of the MNIST classification task, where we
vary the number of training points, and increasingly
difficult tasks constructed from the Omniglot dataset.
Our contribution in this work is a novel experimen-
tal protocol for evaluation of transfer learning applied
to experimentally evaluate CNNs with the slowness-
based HiGSFA.

2 RELATED WORK

Gathering data can be quite costly, so the question
"how much is enough" has been considered in lit-
erature ranging from classical statistics (Krishnaiah,
1980) over pattern recognition (Raudys and Jain,
1991) to experimental design (Beleites et al., 2013).
As data plays a central role in machine learning as
well, the study of its effective use has garnered atten-
tion from all branches of the field.

In a similar vein as our work, (Lawrence et al.,
1998) analyze the effect of generalization when the

ar
X

iv
:1

90
7.

02
54

9v
1

 [
cs

.L
G

]
 3

 J
ul

 2
01

9

number of sample points are varied for supervised
learning tasks. Equipped with the prior that super-
vised learning methods’ performance obeys the in-
verse power law, (Figueroa et al., 2012) trained a
model to predict the classification accuracy of a model
given a number of inputs.

Transfer learning straddles the intersection be-
tween supervised learning and unsupervised learning,
where the focus is uncovering representations that are
both general and also useful for particular applica-
tions. The Omniglot data set we consider was in-
troduced in (Lake et al., 2015) and has been popular
for developing transfer learning methods (Bertinetto
et al., 2016), (Edwards and Storkey, 2016), (Schwarz
et al., 2018).

With its sparse rewards and problems of credit as-
signment, reinforcement learning (RL) has a partic-
ular need for data efficiency, motivating such early
works as prioritized sweeping (Moore and Atkeson,
1993). More recently, (Riedmiller, 2005) designed
the neural-fitted Q-learner for data efficiency. This
method has been successfully combined with deep
auto-encoder representations for visual RL (Lange
and Riedmiller, 2010). Deep Q-Networks have made
better still use of data for RL by combining expe-
rience replay, target networks, reward clipping and
frame skipping (Mnih et al., 2013) (Mnih et al., 2015).

SFA was introduced in 2002 by Wiskott and Se-
jnowski as an unsupervised learning method of tem-
porally invariant features (Wiskott and Sejnowski,
2002). These features can be learned hierarchically in
a bottom-up manner, reminiscent of deep CNNs: slow
features are learned on spatial patches of the input and
then passed to another layer for slow feature learning.
The method is then called hierarchical slow feature
analysis (HSFA) and has attracted attention in neuro-
science for plausible modeling of grid, place, spatial-
view, and head-direction cells (Franzius et al., 2007).

For labeled data, the method admits a supervised
extension in the form of graph-based SFA (GSFA)
(Escalante and Wiskott, 2013). Information is often
lost in early layers of hierarchical SFA — that could
contribute to a globally slower signal — prompt-
ing the development of HiGSFA (Escalante-B and
Wiskott, 2016).

Deep learning extensions of SFA is currently an
active research area. The SFA problem is solved
with stochastic optimization in Power-SFA (Schüler
et al., 2018). A differentiable whitening layer is con-
structed, allowing for a non-linear expansion of the
input to be learned with backpropagation. Another
recent method, SPIN (Pfau et al., 2018) learns eigen-
functions of linear operators with deep learning meth-
ods and can be applied to the SFA problem as well.

3 METHODS

Below we describe the novel experimental setup as
well as the methods being evaluated using the setup.
For the remainder of the article we assume CNNs to
be well-known and understood but we can recom-
mend (CS231n, 2017) as a good pedagogical intro-
duction to the method.

3.1 HiGSFA

HiGSFA belongs to a class of methods motivated by
the slowness principle, which is based on the assump-
tion that important aspects vary more slowly than
unimportant ones (Sun et al., 2014). This model takes
as input data points such that data point xn is node n in
an undirected graph with weight v(n). This can con-
trol the relative weight each data point has during the
training but we set it as uniformly 1 is our experiments
below.

The edge between nodes n and n′ is γn,n′ and sig-
nifies a relationship between the data. This could be
their spatial or temporal proximities or whether they
belong to the same class.

For instance, during our classification tasks below,
we set:

γn,n′ =

{
1, if n and n′ in same class
0, otherwise

(1)

Given a function space F with elements g j, we
learn slowly varying features y j(n) = g j(xn) of the
data by solving the optimization problem (Escalante
and Wiskott, 2013):

minimize
g j

1
R

γn,n′ ∑
n,n′

(
y j(n)− y j(n′)

)2

subject to
1
Q ∑

n
vny j(n) = 0

1
Q ∑

n
vn (y j(n))

2 = 1

1
Q ∑

n
vny j(n)y j′(n) = 0, j′ < j

where Q = ∑
n

vn, R = ∑
n,n′

γn,n′

(2)

The first constraint secures weighted zero mean,
the second constraint secures weighted unit variance
and the third one secures weighted decorrelation and
order.

To reduce computational complexity, we extract
features of the data hierarchically. Similarly to CNNs,

we extract features from F ×F patches of the image
data in the first layer, then extract features of F ′×F ′

patches of the output features in the next layer and so
on. The layers are trained by solving the optimization
problem, one layer at a time, from the input layer to
the output layer. The layer-wise parameters can be
shared.

As we can experience information-loss while do-
ing these layer-wise optimizations, an information-
preserving mechanism is added. The cost function is
minimized locally, so we can experience information-
loss if dimensions are discarded that do not minimize
the function on a local level — but could conceivably
be better for the overall problem.

For each layer (figure 1), a threshold is placed on
the features with respect to their slowness. If an out-
put feature or features would be too fast, we replace
them by the most variance-preserving PCA features.
Each layer thus outputs a combination of slow fea-
tures and PCA features.

Figure 1: HiGSFA network layer. The feature generation is
similar to that of the CNN. The layer outputs N channels of
slow features and M channels of PCA features. The num-
ber of PCA channels features is either fixed beforehand or
determined by replacing a number M of the SFA features
whose slowness (cost function in eq. 2) exceeds a given
threshold.

3.2 General description of protocol

The performance of two hypothesis h1 and h2, not
necessarily from the same hypothesis set H , is com-
pared on a classification task. The learning curves
of the two hypothesis are plotted as a function of the
number of data points in the training set. This can be
done simply by taking an increasing number of train-
ing points per class as we evaluate using MNIST, be-
low.

Alternatively, the number of training points per
class are kept constant and the number of classes are
varied. The relationship training and test set distri-
butions is also altered, such that the task ranges from
classical classification to transfer learning. We report
a comparison of methods below using this scheme on
the Omniglot data set.

3.3 Evaluation on MNIST

First, we compare classification accuracies on
MNIST (LeCun et al., 1998) as a function of the num-
ber of samples per class used during training. The im-
ages have a dimension of 28× 28 pixels. For 100 it-
erations, we choose random samples from each class
and use a thousand unused samples from each class
for validation. Finally, the models are tested on the
classic 10 thousand test images.

3.3.1 Architectures

We constructed a two-layer HiGSFA network with
circa 13k parameters (the number is stochastic and
changes from training set to training set), extracting
400 features from the data. The first layer has a filter
size of 5× 5 and a stride of 2, extracting 25 features
for each spatial patch. The second layer has a filter
size of 4× 4 and a stride of 2, extracting 16 features
for each spatial patch.

The output of the first layer is concatenated with a
copy of itself, where each element x is replaced with
|x|0.8, doubling the number of channels and giving us
nonlinearity. If the value of the objective function is
larger than a threshold of 1.99, we select PCA fea-
tures. This upper bound is motivated by the fact that
non-predictive, white noise features take a value of
2 in the objective function (Creutzig and Sprekeler,
2008). The parameters within each layer are shared.
A single-layer softmax neural network was trained on
the features of the second layer to handle classifica-
tion, which has 4010 parameters.

Two standard CNNs were constructed as well, one
with the constraint to have a similar number of param-
eters as the HiGSFA network, and another with an
amount closer to what is seen in practice on similar
datasets. That is to say, the smaller CNN corresponds
to the HiGSFA network.

We call the smaller network CNN-1 which has
10,032 trainable parameters, excluding the number in
the final layer for classification. The tasks have vary-
ing numbers of classes to be predicted, causing the
classification layer to have varying numbers of param-
eters. CNN-1 has three convolutional layers, each one
followed by ReLU and max pooling, the first two with
8 channels and the last one with 16. They are followed
by a fully connected classification layer, using a soft-
max activation function. The first convolutional layer
has a filter size of 7×7, and the other two have a filter
size of 5× 5. The convolutional layers have a stride
of 1 and the max pooling layers have a stride of 2.

We call the larger network CNN-2, with 116,214
parameters (not counting the classification layer). It
is the same as CNN-1 except the convolutional layers

have twice the number of channels, and a dense layer
with 150 units is added before the classification layer.

Note that the parameter configurations of both
HiGSFA and CNNs have not been optimized for the
best performance on the tasks below. They were de-
signed to be lightweight according to general best
practices (Hadji and Wildes, 2018) (Escalante-B and
Wiskott, 2016). This allows for more trials and tighter
confidence bounds while achieving fair performance
on the tasks.

3.4 Evaluation on Omniglot

Omniglot is a handwritten character dataset consist-
ing of 50 alphabets with 14 to 55 characters each, each
character having 20 samples (Lake et al., 2015). The
alphabets vary from real alphabets, such as Greek, to
fictional ones, such as Alienese (from the TV show
“Futurama”). Each sample was drawn by a differ-
ent person for this dataset. It is typically split into 30
training alphabets, and 20 testing alphabets. Note that
the training-testing split separates the alphabets; all
samples originating from all characters from a given
alphabet appear in either the training set or the test set
but not both. This makes it a transfer learning task
as the training and test data set samples drawn from
separate distributions.

In the original work using the dataset, the meth-
ods were first trained on the 30 background alpha-
bets, and then a 20 way one shot classification task
was performed. Two samples are taken from each of
20 characters from random evaluation alphabets. One
sample is placed in what we’ll call a probe set, and
the other in a target set. The methods then try to find
the corresponding sample in the target set that is the
same character as any given sample in the probe set.

Figure 2: 16 way one shot classification. Symbols on the
left are presented to the algorithm, one at a time, and the
task is to find the same character from the symbols on the
right.

In the vein of the original Omniglot task, we com-
pare several models in three challenges. In all chal-
lenges, we do 16 way one shot classification using
1-nearest-neighbor (1-NN) under the Euclidean dis-
tance. The challenges differ in how the test set is re-
lated to the training set:

3.4.1 Challenge 0

From 16 random characters used for training, we take
two samples that the models were trained on. These
samples are placed in two sets, the probe and target
sets, such that each set contains one sample of each
character. The model under consideration extracts
features from each image. We then iterate through
each feature vector from images in the probe set and
find the closest feature vector from the target set. If
those two vectors belong to images of the same class,
then we count it as a success.

3.4.2 Challenge 1

Same as above, but we take characters used during
training for the probe set and perform classification
on samples that were not used during the training.

3.4.3 Challenge 2

Same again, but now we do the classification on char-
acters that do not belong to alphabets used during
training.

3.4.4 Omniglot architectures

All model architectures are the same for MNIST
and Omniglot, but the Omniglot images are resized
to 35× 35, having the effect that HiGSFA outputs
784 features. The number of model parameters does
not change as the weights are shared for the image
patches. The HiGSFA features used for classification
are simply the 784 output features and we do not train
a neural network classifier on them.

The total number of parameters in the CNNs de-
pend on the number of training classes, due to the
classification layer. We fix the number of alphabets to
8 and vary the number of characters per class to be 4,
6, 8, 10, 12 and vice versa. The number of parameters
for CNN-1 range between 18k and 35k, and for CNN-
2 range between 121k and 130. If we do not count the
parameters from the final classification layer, then the
number of parameters for CNN-1 for these tasks is
always 10,032 and the number for CNN-2 is 116,214.

After training the CNNs, we perform feature ex-
traction by intercepting the output of the second-to-
last layer. Here the assumption is that CNNs learn
a representation for the classification layer (Razavian
et al., 2014). We are then interested in comparing the
strength of HiGSFA and CNN representations when
used by a 1-NN classifier.

Samples HiGSFA CNN-1 CNN-2
Acc. Std. Acc. Std. Acc. Std.

5 35.683 ± 0.430 72.361 ± 0.365 72.320 ± 0.094
10 75.736 ± 0.222 80.392 ± 0.241 79.551 ± 0.175
50 92.970 ± 0.050 90.320 ± 0.101 91.465 ± 0.070

200 96.246 ± 0.027 94.672 ± 0.062 95.648 ± 0.051
500 97.188 ± 0.013 96.579 ± 0.046 97.308 ± 0.054

2000 97.887 ± 0.009 98.247 ± 0.020 98.571 ± 0.023
6000 98.134 ± 0.008 98.687 ± 0.014 98.949 ± 0.015

Table 1: MNIST Accuracies. The percentage of correctly classified samples on the test set along with the standard error of
the mean (SEM).

3.4.5 Training

The models were trained on varying amounts of sam-
ples per character. The HiGSFA network was trained
to solve the optimization problem on each image
patch, one layer at a time. All neural networks were
trained in Keras (Chollet et al., 2015) using ADAM
(Kingma and Ba, 2014), with default parameters, to
minimize cross-entropy.

After each epoch, the error was calculated on the
validation set. Early stopping was performed after
the validation error had increased four times in to-
tal during the training. The training for Omniglot is
the same, except instead of early stopping, the CNNs
were trained for 20 epochs in all cases.

4 RESULTS

4.1 MNIST Results

We trained the models using 5, 10, 50, 200, 2000 or
4000 samples per digit. In table 1, we see the statistics
from 100 runs, where the models were trained from
random initializations, evaluated and tested. The con-
volutional networks have the highest accuracies when
there are 2000 or more samples per class and when
there are only 5 or 10 samples per class.

However, HiGSFA has a higher accuracy than the
CNN with a similar number of parameters for 500
samples per class. Furthermore, HiGSFA has higher
accuracies than both CNNs for 200 and 50 samples
per class. The CNN with a larger number of parame-
ters always has higher prediction accuracies than the
one with a lower number of parameters.

4.2 Omniglot Results

The 1-NN classifier uses the second-to-last CNN
outputs or HiGSFA features. We fix either the

number of alphabets, or characters-per-alphabet,
to be 8 and vary the other number from 4 to
12 in increments of 2. The number of sam-
ples per character is either 4 or 16. The largest
total number (alphabets× characters per alphabet×
samples per character) of samples used for training is
1536 and the lowest is 128.

In figure 3, we see the average of all the runs
over the different samples per characters and number
of classes. In all of the challenges, the CNNs have
higher accuracies than HiGSFA. On average, CNN-2
has higher accuracies in challenges 0 and 2. Neither
CNN achieves significantly better accuracy than the
other in challenge 1.

5 DISCUSSION AND
CONCLUSION

The work of this paper is intended to facilitate under-
standing of algorithms from the point of view of hav-
ing particularly low numbers of samples. We present
simple-to-implement challenges that allow for evalua-
tion of data efficiency in the context of representation
learning.

For the models experimented on, we see that
the CNNs usually perform better, but HiGSFA out-
performs the CNNs on 50 and 200 sample training
sets from the MNIST data. One can speculate that
the default CNN architectures ensure generalization
through max-pooling whereas SFA mostly learns to
generalize from a moderately sized data set.

Another explanation for the different ranges of
comparative performance optima is the choice of
delta-threshold of HiGSFA. The method overesti-
mates the slowness of the slowest features when it has
too few samples. This has the effect that fewer PCA
features are selected for a lower number of samples.
On the other hand, with more than 200 samples, there
could be too many PCA features chosen. Setting the
number of slow features to be a constant for all sam-

Figure 3: Classification Accuracies. There are either 8 alphabets and we vary the characters per alphabet, or vice versa. The
error bars indicate the standard error of the mean. These plots are best viewed in color.

ple sizes could be better for robustness than fixing the
delta threshold.

Notice the trend in challenge 0: the accuracy goes
down as the number of samples increases. This is due
to the samples used for the probe and target sets being
drawn from the training set and we are training and
testing on larger sets as we move from left to right.

Overall, for the Omniglot challenges, the accura-
cies of the CNNs lie comfortably above the HiGSFA

accuracies, but it’s not always discernible whether the
larger or the smaller CNN performs better. An ex-
planation for this could be that the tasks are not diffi-
cult enough for more parameters to be necessary. The
local optimality of GSFA could result in an insuffi-
ciently robust or transferable representation if there
are many classes and few samples per class.

These challenges are more complicated set of
classification tasks than the MNIST ones, with a

larger number of classes overall. This give CNNs an
opportunity to take advantage of having been trained
directly for classification when they are presented a
similar task. Although HiGSFA takes advantage of
class labels, it suffers in comparison for not taking
into account the downstream task during training.

For future work, a complete extension of the ex-
periments here could include an analysis on the effect
that different type of data would have on the perfor-
mance. This would yield further insight than vary-
ing the number of rather homogeneous data used for
training. Additionally, the performance of a wider ar-
ray of popular methods can be compared.

More types of benchmarks for comparing differ-
ent models over varying training set sizes would be
helpful for this kind of research. Knowledge gained
from them would as well allow practitioners to choose
the right model for the scale and type of the problem
they wish to solve. These experiments give rise to the
question: how can these methods with their different
strengths and weaknesses profit from each other?

REFERENCES

Al-Jarrah, O. Y., Yoo, P. D., Muhaidat, S., Karagiannidis,
G. K., and Taha, K. (2015). Efficient machine learning
for big data: A review. Big Data Research, 2(3):87–
93.

Beleites, C., Neugebauer, U., Bocklitz, T., Krafft, C., and
Popp, J. (2013). Sample size planning for classifica-
tion models. Analytica chimica acta, 760:25–33.

Bengio, Y., Courville, A., and Vincent, P. (2013). Represen-
tation learning: A review and new perspectives. IEEE
transactions on pattern analysis and machine intelli-
gence, 35(8):1798–1828.

Bertinetto, L., Henriques, J. F., Valmadre, J., Torr, P., and
Vedaldi, A. (2016). Learning feed-forward one-shot
learners. In Advances in Neural Information Process-
ing Systems, pages 523–531.

Chollet, F. et al. (2015). Keras. https://keras.io.
Creutzig, F. and Sprekeler, H. (2008). Predictive coding

and the slowness principle: An information-theoretic
approach. Neural Computation, 20(4):1026–1041.

CS231n, S. (2017). Convolutional neural networks for vi-
sual recognition.

Edwards, H. and Storkey, A. (2016). Towards a neural
statistician. arXiv preprint arXiv:1606.02185.

Escalante, A. N. and Wiskott, L. (2013). How to
solve classification and regression problems on high-
dimensional data with a supervised extension of slow
feature analysis. Journal of Machine Learning Re-
search, 14(1):3683–3719.

Escalante-B, A. N. and Wiskott, L. (2016). Improved
graph-based SFA: Information preservation comple-
ments the slowness principle. CoRR.

Figueroa, R. L., Zeng-Treitler, Q., Kandula, S., and Ngo,
L. H. (2012). Predicting sample size required for clas-
sification performance. BMC medical informatics and
decision making, 12(1):8.

Franzius, M., Sprekeler, H., and Wiskott, L. (2007). Slow-
ness and sparseness lead to place, head-direction,
and spatial-view cells. PLoS computational biology,
3(8):e166.

Hadji, I. and Wildes, R. P. (2018). What do we under-
stand about convolutional networks? arXiv preprint
arXiv:1803.08834.

Kamthe, S. and Deisenroth, M. P. (2017). Data-efficient
reinforcement learning with probabilistic model pre-
dictive control. arXiv preprint arXiv:1706.06491.

Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Krishnaiah, P. R. (1980). Handbook of statistics, volume 31.
Motilal Banarsidass Publishe.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
(2015). Human-level concept learning through proba-
bilistic program induction. Science, 350(6266):1332–
1338.

Lange, S. and Riedmiller, M. (2010). Deep auto-encoder
neural networks in reinforcement learning. In The
2010 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8. IEEE.

Lawrence, S., Giles, C. L., and Tsoi, A. C. (1998). What
size neural network gives optimal generalization?
convergence properties of backpropagation. Techni-
cal report.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M.
(2013). Playing atari with deep reinforcement learn-
ing. arXiv preprint arXiv:1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fid-
jeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning.
Nature, 518(7540):529.

Moore, A. W. and Atkeson, C. G. (1993). Prioritized sweep-
ing: Reinforcement learning with less data and less
time. Machine learning, 13(1):103–130.

Oquab, M., Bottou, L., Laptev, I., and Sivic, J. (2014).
Learning and transferring mid-level image represen-
tations using convolutional neural networks. In Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, pages 1717–1724.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learn-
ing. IEEE Transactions on knowledge and data engi-
neering, 22(10):1345–1359.

Pfau, D., Petersen, S., Agarwal, A., Barrett, D., and
Stachenfeld, K. (2018). Spectral inference networks:
Unifying spectral methods with deep learning. CoRR,
abs/1806.02215.

Raudys, S. J. and Jain, A. K. (1991). Small sample size ef-
fects in statistical pattern recognition: Recommenda-
tions for practitioners. IEEE Transactions on Pattern
Analysis & Machine Intelligence, (3):252–264.

Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson,
S. (2014). CNN features off-the-shelf: an astounding
baseline for recognition. CoRR, abs/1403.6382.

Riedmiller, M. (2005). Neural fitted q iteration–first ex-
periences with a data efficient neural reinforcement
learning method. In European Conference on Ma-
chine Learning, pages 317–328. Springer.

Schüler, M., Hlynsson, H. D., and Wiskott, L. (2018).
Gradient-based training of slow feature analysis by
differentiable approximate whitening. arXiv preprint
arXiv:1808.08833.

Schwarz, J., Luketina, J., Czarnecki, W. M., Grabska-
Barwinska, A., Teh, Y. W., Pascanu, R., and Had-
sell, R. (2018). Progress & compress: A scalable
framework for continual learning. arXiv preprint
arXiv:1805.06370.

Sun, L., Jia, K., Chan, T.-H., Fang, Y., Wang, G., and Yan,
S. (2014). Dl-sfa: deeply-learned slow feature analy-
sis for action recognition. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 2625–2632.

Wang, Y.-X., Girshick, R., Hebert, M., and Hariharan, B.
(2018). Low-shot learning from imaginary data. arXiv
preprint arXiv:1801.05401.

Wiskott, L. and Sejnowski, T. J. (2002). Slow feature anal-
ysis: Unsupervised learning of invariances. Neural
computation, 14(4):715–770.

